Goldsmiths’ 2013

From the Roman Baths (via the Corn Belt) to Bio-based Sustainability

Professor Matthew Davidson

Whorrod Professor of Sustainable Chemical Technologies

Bath University

Utilising bioresources:

image     image

Biofuels                                                                  Bioplastics

Endangered elements


We are used to hearing about fossil fuels running out but we are running out of individual elements.

China is producing 97% of the rare earth metals and there is some concern that this will put a strain on supply and the world may soon face a shortage of them.

Another problem is that some of the elements, such as zinc, cannot be recovered after use.

Helium is dispersed naturally as it has such a low density. It can only be produced naturally by radioactive decay, and this is a slow process.

In an average lifetime an American will consume:


New Scientist, 23rd May 2007

How long will it last

New Scientist, 23rd May 2007


Where the minerals are


New Scientist, 23rd May 2007


Centre for Sustainable Chemical Technologies

Cross-Faculty Research Centre

£7.5m core EPSRC funding

£20m overall funding (including £1m gift from Roger and Sue Whorrod)

Funding for five 5-year Research Fellows

37 current PhD Students

40 academic staff involved

20 external partners


“The ability to provide for the needs of the present without compromising the ability of future generations to meet their own needs.” (UN Brudtland Commission, 1987)

“Economic development, social development and environmental protection – as interdependent and mutually reinforcing pillars.” (UN World Summit, 2005)

“The nation behaves well if it treats the natural resources as assets which it must turn over to the next generation increased and not impaired in value.” (Theodore Roosevelt, The New Nationalism, 1910)


The picture on the left is of Theodore “T.R.” Roosevelt, Jr. (October 27, 1858 – January 6, 1919) was the 26th President of the United States (1901–1909).

‘Sanpo-Yoshi’: Three-way satisfaction for the seller, the buyer and society in general. Creed of Omi Merchants, Edo Period (17th-19th Century)

Oil is a finite resource (Peak Oil)


Despite finding new sources of oil, it is finite. We are using it faster than it can be made.


The peak occurs when there is enough oil to meet consumer demands. This can move as more resources (such as from fracking) are found.

Burning oil contributes to global warming


Development needs energy



85 million of oil barrels are used per day



Can we progress beyond the petrochemical industry?… We are constrained by the 2nd Law of Thermodynamics.

It states that the entropy of an isolated system never decreases, because isolated systems spontaneously evolve toward thermodynamic equilibrium—the state of maximum entropy. Equivalently, perpetual motion machines of the second kind are impossible.

Entropy is a measure of the number of specific ways in which a system may be arranged, often taken to be a measure of disorder. The entropy of an isolated system never decreases, because isolated systems spontaneously evolve towards thermodynamic equilibrium, which is the state of maximum entropy.


….. and for a joke



The four laws of thermodynamics define fundamental physical quantities (temperature, energy, and entropy) that characterize thermodynamic systems. The laws describe how these quantities behave under various circumstances, and forbid certain phenomena (such as perpetual motion).

Utilising bioresources:

Enough sunlight falls on the Earth in one hour to supply all of our energy needs for a year and annual biomass production on land is estimated to be six times world energy use. This could include growing plants for biofuels, electricity from solar cells, solar chemistry and solar heating.

Growing plants for biofuels has a problem because photosynthesis is only 2-4% efficient.

A high density liquid fuel is required (short to medium term)


A car’s lifespan is about 20 – 30 years

Biofuels: transitional technology

Short term –> Medium term –> Long term



image image

As you can see in the above images rapeseed cannot produce all our liquid fuels requirements as there isn’t enough space in the UK.

Microalgae: Sustainable feedstocks?

image image

Nannochloropsis (which helpfully can live in salt water) might be an answer.

Nannochloropsis is a genus of alga comprising approximately 6 species. The genus in the current taxonomic classification was first termed by Hibberd (1981). It is considered a promising alga for industrial applications because of its ability to accumulate high levels of polyunsaturated fatty acids and perhaps be a new source of biodiesel.

Algal biofuel pipline


Smith et al., Curr. Op. Biotechnology, 2010, 21, 277-286

Projects at Bath Roman Algae: Exploratory studies of new and known microalgae (Davidson, Scott, Barber, Smith-Baedorf) in association with Johnsom Matthey.

Bioprospecting at the Roman Baths


Aragreen/UoB Wastewater treatment pilot plant (Scott, Davidson, Arnot, Mozzanega, Murray) in association with aragreen.

Aragreen uses micro algae as a key building block for two distinct industrial processes (i) enhanced waste water treatment and (ii) the production of a range of algae containing anti-oxidants, pigments and proteins for human and animal consumption.


We are usually poor at integrating systems. In the above case the algae can use phosphates in waste water (from sewage plants etc.).

Denso catalysis, lipid profiling and mutagenesis (Scott, Davidson, Lubben, Adams, Kaloudis) in association with DENSO

DENSO Corporation is a global automotive components manufacturer headquartered in the city of Kariya, Aichi Prefecture, Japan. Established December 16, 1949 as Nippondenso Co. Ltd., in 1996 the company became DENSO Corporation worldwide. DENSO is a member of the Toyota Group of companies.


Lipid profile or lipid panel, is a panel of blood tests that serves as an initial broad medical screening tool for abnormalities in lipids, such as cholesterol and triglycerides.

Mutagenesis  is a process by which the genetic information of an organism is changed in a stable manner, resulting in a mutation. It may occur spontaneously in nature, or as a result of exposure to mutagens. It can also be achieved experimentally using laboratory procedures. In nature mutagenesis can lead to cancer and various heritable diseases, but it is also the driving force of evolution. Mutagenesis as a science was developed based on work done by Hermann Muller, Charlotte Auerbach and J. M. Robson in the first half of the 20th century.


Multidisciplinary effort at Bath

Feedstock optimization: Prof. Rod Scott – B&B Prof. Michael Danson – B&B Prof. David Leak- B&B

Analysis Dr Anneke Lubben – Chem.

Catalysis/chemical conversion Prof. Matthew Davidson – Chem. Dr Steve Bull – Chem. Dr Matthew Jones – Chem

(Bio)Processing Prof. Stan Kolaczowski – Chem. Eng. Dr Tom Arnot – Chem. Eng. Dr Chris Chuck – Chem. Eng.

Automotive testing Prof. Gary Hawley – Mech. Eng. Dr Chris Bannister – Mech. Eng.


Utilising bioresources: Bioplastics

Polylactide: a renewable, degradable bioplastic


Polylactic acid or polylactide (PLA) is a thermoplasticaliphaticpolyester derived from renewable resources, such as corn starch (in the United States), tapioca roots, chips or starch (mostly in Asia), or sugarcane (in the rest of the world).

The name “polylactic acid” does not comply with IUPAC standard nomenclature, and is potentially ambiguous or confusing, because PLA is not a polyacid (polyelectrolyte), but rather a polyester.


Why renewable?

2 million plastic beverage bottles: the amount used in the US every 5 minutes (

Why degradable?

2.4 million pieces of plastic: equal to the number of pounds that enter the World’s oceans every hour.

PLA: New catalysts for commercial polymers (Davidson, Jones, Chuck, Manton, et al)

In association with Purac, Johnson Matthey and EPSRC



Beyond the petrochemical industry…


There is no more multidisciplinary challenge

There is no more engaging challenge

End of lecture discussion

1) In some of the processes discussed lack of water could be a problem. They are very water intensive processes.

2) Unfortunately a war, political unrest or an insurgence may be necessary for technology to move forwards.

3) Research (especially for something like fusion) use up a lot of money.


One thought on “Goldsmiths’ 2013

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s